Search results for "Island of stability"

showing 10 items of 12 documents

Stability of the heaviest elements: K isomer in No250

2020

Decay spectroscopy of No250 has been performed using digital electronics and pulse-shape analysis of the fast nuclear decays for the first time. Previous studies of No250 reported two distinct fission decay lifetimes, related to the direct fission of the ground state and to the decay of an isomeric state but without the possibility to determine if the isomeric state decayed directly via fission or via internal electromagnetic transitions to the ground state. The data obtained in the current experiment allowed the puzzle to finally be resolved, attributing the shorter half-life of t1/2=3.8±0.3μs to the ground state and the longer half-life t1/2=34.9−3.2+3.9μs to the decay of an isomeric stat…

Physics010308 nuclear & particles physicsFissionNuclear structureState (functional analysis)7. Clean energy01 natural sciencesStability (probability)Island of stability0103 physical sciencesAtomic physics010306 general physicsGround stateSpectroscopySpontaneous fissionPhysical Review C
researchProduct

Isotope shift, non-linearity of King plots and the search for new particles

2017

We derive a mean-field relativistic formula for the isotope shift of an electronic energy level for arbitrary angular momentum; we then use it to predict the spectra of superheavy metastable neutron-rich isotopes belonging to the hypothetical island of stability. Our results may be applied to the search for superheavy atoms in astrophysical spectra using the known values of the transition frequencies for the neutron deficient isotopes produced in the laboratory. An example of a relevant astrophysical system may be the spectra of the Przybylski's star where superheavy elements up to Z=99 have been possibly identified. In addition, it has been recently suggested to use the measurements of Kin…

PhysicsAngular momentumNuclear TheoryField (physics)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesScalar boson01 natural sciencesIsland of stabilityPhysics - Atomic PhysicsStandard ModelNuclear physicsNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Astrophysics - Solar and Stellar AstrophysicsPolarizability0103 physical sciences010306 general physicsRelativistic quantum chemistryNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)Boson
researchProduct

Pushing in-beam gamma-ray spectroscopy to the shores of the Island of stability

2013

One hundred years after the discovery of the atomic nucleus by Ernest Rutherford, the nuclear chart has been extended far from stability, providing more and more stringent tests for nuclear models. Nuclei at the extremes of the chart are produced with extremely low production cross-sections and one has to ingeniously upgrade the best experimental devices in order to reduce the observational limits.

Nuclear physicsPhysicsNuclear and High Energy PhysicsUpgradeChartta114Atomic nucleusGamma spectroscopyExperimental DevicesIsland of stabilityBeam (structure)Nuclear Physics News
researchProduct

Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

2013

Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …

Nuclear and High Energy PhysicsProtonIsotopeChemistryNuclear TheoryBinding energychemistry.chemical_elementIsland of stabilityNuclear physicsAtomic nucleusNeutronNobeliumInstrumentationLawrenciumNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Understanding the nuclear structure of heavy elements

2013

The study of heavy and superheavy elements has always been one of the cornerstones of nuclear physics studies. These studies are driven by a desire to create new elements and to determine the limits of nuclear stability. Current experiments to synthesize new elements aim at the fabled ?Island of Stability? which should be found in the region of the next ?magic? numbers for protons and neutrons beyond Z?=?82 and N?=?126 (208Pb). The island is predicted to be around proton number 114?126 and neutron number 184. In recent years, another approach to understanding heavy nuclear systems has gained momentum, whereby nuclei with a much lower proton number of around 100 are studied in detail. The mo…

Physics010308 nuclear & particles physicsNuclear structureSuperheavy ElementsCondensed Matter Physics7. Clean energy01 natural sciencesAtomic and Molecular Physics and OpticsIsland of stabilityNuclear physicsNeutron number0103 physical sciencesNeutronAtomic number010306 general physicsMathematical PhysicsPhys. Scr. T152, 014016 (2013)

researchProduct

Search for superheavy elements in damped collisions betweenU238andCm248

1986

Negative results for the production of superheavy elements in damped collisions between $^{238}\mathrm{U}$ projectiles and $^{248}\mathrm{Cm}$ targets are reported. This reaction was believed to permit a closer and more widespread approach to the predicted island of stability near Z=114 and N=184 than any practical fusion reaction. Aqueous and gas phase chemistry techniques were used to isolate superheavy element fractions. The fractions were counted for spontaneous fission activity, fragment kinetic energies, and neutron multiplicities. Cross-section limits for half-lives from hours to several years are g4\ifmmode\times\else\texttimes\fi{}${10}^{\mathrm{\ensuremath{-}}35}$ ${\mathrm{cm}}^{…

PhysicsNuclear physicsNuclear reactionNuclear and High Energy PhysicsQ valueHadronNeutronElementary particleAtomic physicsNuclear ExperimentNucleonIsland of stabilitySpontaneous fissionPhysical Review C
researchProduct

Production and properties towards the island of stability

2016

The structure of the nuclei of the heaviest elements is discussed with emphasis on single-particle properties as determined by decay and inbeam spectroscopy. The basic features of production of these nuclei using fusion evaporation reactions will also be discussed. peerReviewed

PhysicsFusionta114010308 nuclear & particles physicsPhysicsQC1-999Nuclear TheoryEvaporation01 natural sciencesEngineering physicsIsland of stabilitysuperheavy elementsisland of stability0103 physical sciencesnuclear structure010306 general physicsSpectroscopyNuclear Experiment
researchProduct

Search for elements 119 and 120

2020

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…

Physicselement 119010308 nuclear & particles physicselement 120Superheavy Elements01 natural sciencesIsland of stabilityRecoil separatorNuclear physicssuperheavy elementsProduction cross sectionSubatomic Physics0103 physical sciences540 Chemistry570 Life sciences; biologylow and intermediate energy heavy-ion reactionsAtomic numberIrradiationSensitivity (control systems)ydinfysiikka010306 general physicsBeam energyPhysical Review C
researchProduct

Bridging the nuclear structure gap between stable and super heavy nuclei

2009

International audience; Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapo…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsFermi levelNuclear TheoryNuclear structureFermi surface[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyIsland of stabilityNuclear physicssymbols.namesakeAtomic orbitalExcited state0103 physical sciencessymbolsWoods–Saxon potential010306 general physicsNuclear Experiment
researchProduct

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

2014

Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number $Z=114,120$, or $126$ and neutron number $N=184$ has been substantiated by the recent synthesis of new elements up to $Z=118$. However the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at $N=152$.

PhysicsMultidisciplinaryIsotopeNuclear TheoryBinding energyShell (structure)FOS: Physical scienceschemistry.chemical_elementIsland of stabilityNuclear physicschemistryNeutron numberNobeliumAtomic numberNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentLawrenciumScience
researchProduct